The set of partial recursive functions is defined as the smallest set of partial functions of any arity from natural numbers to natural numbers which contains the zero, successor, and projection functions, and which is closed under composition, primitive recursion, and unbounded search.
|
El conjunt de les funcions recursives parcials està definit com el més petit conjunt de funcions parcials amb qualsevol nombre d’arguments dels naturals en els naturals que contenen el zero, el successor i les funcions de projecció, tals que la composició, la recursió primitiva i la cerca no acotada són operacions tancades d’aquest conjunt.
|